vLLM
安装¶
uv venv --python 3.10 --seed
source .venv/bin/activate
pip install https://github.com/vllm-project/vllm/releases/download/v0.4.0/vllm-0.4.0+cu118-cp310-cp310-manylinux1_x86_64.whl --extra-index-url https://download.pytorch.org/whl/cu118
生成¶
来自https://github.com/vllm-project/vllm/blob/main/examples/offline_inference/basic/basic.py:
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from vllm import LLM, SamplingParams
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
def main():
# Create an LLM.
llm = LLM(model="facebook/opt-125m")
# Generate texts from the prompts.
# The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
if __name__ == "__main__":
main()
默认情况下,vLLM 将使用模型创建者推荐的采样参数,并应用 Hugging Face 模型库中的 generation_config.json (如果存在的话).在大多数情况下,如果没有指定 SamplingParams,默认情况下这将为您提供最佳结果. 不过,如果希望使用 vLLM 的默认采样参数,请在创建 LLM 实例时设置 generation_config="vllm".